# System with Radical

Pro Problems > Math > Algebra > Equations > Systems of Equations > Non-Linear## System with Radical

The sum of two numbers is seven times the difference between three times the second number and twice the first number. If the second number is subtracted from the first, the result is the square root of the first. Find all possible values for the first number.

## Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.## Similar Problems

### To Sum It Up

I have picked three positive integers for the lottery, as follows: The sum of my numbers is 54. The sum of my numbers, plus the sum of two of my numbers, is 84. The sum of the squares of my numbers is 1034. What are the three integers?

### Linear and Quadratic

Find all ordered pairs (x, y) such that:

3x - y = 10

x^{2} + 8x - y^{2} + 3y = 17

### Product of X and Y

For the ordered pair (x,y) the product of x and y is 108. If x + 2y = 30, find all possible ordered pairs (x,y).

### Sum and Product System

The sum of a number and twice another number is ten less than the product of the numbers. The sum of the numbers is ten. What are all possible numbers that satisfy these criteria?

### System with a Product

Find all ordered pairs (x, y) such that

2x + xy + y = 18

x - y = 2

### Quadratic System

Find all ordered pairs (x, y) such that the following two equations are true:

x^{2} - 4y^{2} = 108

x = 18 - 2y

### Cubic and Linear

Find all ordered pairs (x,y) which solve the following system of equations:

x^{3} + 12xy^{2} = 7x^{2}y

x + y = 20

### X and Y System

Find all ordered pairs (x,y) which solve the following non-linear system of equations.

x(x - 2y) - 4 = 2y(x - 2y)

x + 2y = 10

### Quadratic System

Solve for m and n.

(m + n)^{2} - 10(m + n) + 24 = 0

(m - n)^{2} + 6(m - n) + 8 = 0

### Sum of X and Y

Find the sum of x and y if x and y are positive numbers such that x^{2} + 3xy + y^{2} = 424 and xy = 100