Digits in a Multiplication Problem
Pro Problems > Math > Number and Quantity > Number Theory > DigitsDigits in a Multiplication Problem
You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.
_ _ _ x _ _ x _ =
What is the largest possible value you can create?
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Find the Number
My digits are all odd, and they add to 18. My first digit is four more than my last digit, the product of my digits is between 300 and 315, and I am less than 100,000. If my digits are not in descending order, what numbers could I be?
Coffee Math
Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.
♦7♦ + ♦♦9 ----- 50♦
If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits
Back to Back
X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?
Two Digit Pattern Matching
How many two-digit numbers are there such that the digits match at least one of the following patterns:
- The digits are both multiples of three.
- Neither of the digits are multiples of two.
- The digits add to 8.
- The digits are perfect squares.
Four Digit Number
I am a four digit number.
The sum of my digits is 20.
The product of my digits is 600.
The difference between my first two digits is 2, and the sum of my middle two digits is 11.
What number am I?
All My Digits
All my digits are non-zero perfect squares. If you treat my first two digits as a two-digit number, and treat my last two digits as a two-digit number, the sum of these two numbers is also a perfect square. If I am a three digit number, what numbers could I be?
Set of Five Digit Numbers
S is the set of five-digit numbers such that the digits are in ascending order, there are no repeated digits, the sum of the first two digits is equal to the third digit, and the sum of the third and fourth digits is equal to the two more than the fifth digit. How many elements are in the set S? (Note that the leading digit cannot be a zero).
Rhonda's Zip Code
Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?
Sum of Digits
Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.
Grapes on the Vine
The number of grapes on my grape vine is a three digit number. It is 7 times as much as the number of grapes on the vine last year, and 11 times the number of grapes on the vine the previous year. Next year, if I have twice as many grapes as I do this year, the number of grapes will still be a three digit number, but if I have three times as many grapes, the number of grapes will be a four digit number. If I have 21 times as many grapes, the number of grapes will be a five digit number.
If each jar of grape juice requires 20 grapes, how many full jars of grape juice can I make this year?
