Games
Problems
Go Pro!

Palindrome Addition

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Palindrome Addition

Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.

Note: a palindrome is a number in which the digits would read the same forward and backward.

 

Presentation mode
Problem by Mr. H

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Rhonda's Zip Code

Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?

My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

Three Digits with Difference

I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Digits in a Multiplication Problem

You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.

_ _ _ x _ _ x _ = 

What is the largest possible value you can create?

Coffee Math

Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.

  ♦7♦
+ ♦♦9
-----
  50♦

If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits

Three Digits, sum and product

I'm a three digit number. My first two digits multiply to 12, and my last two digits add to 14. What number am I?

All My Digits

All my digits are non-zero perfect squares. If you treat my first two digits as a two-digit number, and treat my last two digits as a two-digit number, the sum of these two numbers is also a perfect square. If I am a three digit number, what numbers could I be?

Four Digit Number

I am a four digit number.

The sum of my digits is 20.

The product of my digits is 600.

The difference between my first two digits is 2, and the sum of my middle two digits is 11.

What number am I?

Three Digit Difference

Two positive integers, A and B, both have 3 digits. A is bigger than B. A – B is between 300 and 400. What is the value of A - B?

 

Find the Number, The Middle Palindrome, Two Digit Pattern Matching, Reverse Me, Grapes on the Vine, Set of Five Digit Numbers, Fill in the blanks, Five Digit Number, Sum of Digits, Fiona's Telephone Number, Back to Back, I Have Three Digits, Three Digit Number, Three Digit Number

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy