Games
Problems
Go Pro!

Find the Number

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Find the Number

My digits are all odd, and they add to 18. My first digit is four more than my last digit, the product of my digits is between 300 and 315, and I am less than 100,000. If my digits are not in descending order, what numbers could I be?

Presentation mode
Problem by BogusBoy

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Coffee Math

Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.

  ♦7♦
+ ♦♦9
-----
  50♦

If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits

Back to Back

X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?

 

My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

Three Digit Difference

Two positive integers, A and B, both have 3 digits. A is bigger than B. A – B is between 300 and 400. What is the value of A - B?

 

Rhonda's Zip Code

Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Two Digit Pattern Matching

How many two-digit numbers are there such that the digits match at least one of the following patterns:

  1. The digits are both multiples of three.
  2. Neither of the digits are multiples of two.
  3. The digits add to 8.
  4. The digits are perfect squares.

Sum of Digits

Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.

Reverse Me

I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.

What number am I?

The Middle Palindrome

If all the palindromes between 100 and 1000 were listed in order from smallest to largest, what is the average of the two numbers in the middle of the list?

NOTE: A palidrome is a number which reads the same forward and backward. For example, if you reverse the digits of 97279, you still have 97279.

All My Digits, Five Digit Number, Set of Five Digit Numbers, Grapes on the Vine, Three Digit Number, I Have Three Digits, Four Digit Number, Digits in a Multiplication Problem, Three Digits with Difference, Three Digit Number, Fiona's Telephone Number, Three Digits, sum and product, Fill in the blanks, Palindrome Addition

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy