# Find the Number

Pro Problems > Math > Number and Quantity > Number Theory > Digits## Find the Number

My digits are all odd, and they add to 18. My first digit is four more than my last digit, the product of my digits is between 300 and 315, and I am less than 100,000. If my digits are not in descending order, what numbers could I be?

## Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.## Similar Problems

### Fill in the blanks

In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.

3xy2 + 3y1 = 40x3

### Set of Five Digit Numbers

S is the set of five-digit numbers such that the digits are in ascending order, there are no repeated digits, the sum of the first two digits is equal to the third digit, and the sum of the third and fourth digits is equal to the two more than the fifth digit. How many elements are in the set S? (Note that the leading digit cannot be a zero).

### Sum of Digits

Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.

### Grapes on the Vine

The number of grapes on my grape vine is a three digit number. It is 7 times as much as the number of grapes on the vine last year, and 11 times the number of grapes on the vine the previous year. Next year, if I have twice as many grapes as I do this year, the number of grapes will still be a three digit number, but if I have three times as many grapes, the number of grapes will be a four digit number. If I have 21 times as many grapes, the number of grapes will be a five digit number.

If each jar of grape juice requires 20 grapes, how many full jars of grape juice can I make this year?

### Coffee Math

Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.

♦7♦ + ♦♦9 ----- 50♦

If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits

### My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

### I Have Three Digits

I am a three digit number, and the following things are true about me:

- The product of two of my digits is 8.
- The sum of my digits is 13.
- My first digit is four times my second digit.

What number am I?

### Back to Back

X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?

### Reverse Me

I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.

What number am I?

### Five Digit Number

The sum of the digits of a three digit number is eighteen. The first digit is three more than the last digit. There is a repeated digit in the number. What are all possible values of the number?