Games
Problems
Go Pro!

Grapes on the Vine

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Grapes on the Vine

The number of grapes on my grape vine is a three digit number. It is 7 times as much as the number of grapes on the vine last year, and 11 times the number of grapes on the vine the previous year. Next year, if I have twice as many grapes as I do this year, the number of grapes will still be a three digit number, but if I have three times as many grapes, the number of grapes will be a four digit number. If I have 21 times as many grapes, the number of grapes will be a five digit number.

If each jar of grape juice requires 20 grapes, how many full jars of grape juice can I make this year?

Presentation mode
Problem by madelynK

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Back to Back

X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?

 

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Three Digit Number

I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
 

All My Digits

All my digits are non-zero perfect squares. If you treat my first two digits as a two-digit number, and treat my last two digits as a two-digit number, the sum of these two numbers is also a perfect square. If I am a three digit number, what numbers could I be?

Four Digit Number

I am a four digit number.

The sum of my digits is 20.

The product of my digits is 600.

The difference between my first two digits is 2, and the sum of my middle two digits is 11.

What number am I?

Sum of Digits

Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.

Three Digits with Difference

I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?

Rhonda's Zip Code

Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?

Three Digits, sum and product

I'm a three digit number. My first two digits multiply to 12, and my last two digits add to 14. What number am I?

Coffee Math

Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.

  ♦7♦
+ ♦♦9
-----
  50♦

If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits

Two Digit Pattern Matching, Three Digit Number, Palindrome Addition, Reverse Me, Find the Number, Five Digit Number, Three Digit Difference, Fill in the blanks, Set of Five Digit Numbers, I Have Three Digits, The Middle Palindrome, Fiona's Telephone Number, Digits in a Multiplication Problem, My Three Digits

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy