# My Three Digits

Pro Problems > Math > Number and Quantity > Number Theory > Digits## My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

## Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.## Similar Problems

### Digits in a Multiplication Problem

You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.

_ _ _ x _ _ x _ =

What is the largest possible value you can create?

### Two Digit Pattern Matching

How many two-digit numbers are there such that the digits match at least one of the following patterns:

- The digits are both multiples of three.
- Neither of the digits are multiples of two.
- The digits add to 8.
- The digits are perfect squares.

### Coffee Math

Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.

♦7♦ + ♦♦9 ----- 50♦

If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits

### Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

### Grapes on the Vine

The number of grapes on my grape vine is a three digit number. It is 7 times as much as the number of grapes on the vine last year, and 11 times the number of grapes on the vine the previous year. Next year, if I have twice as many grapes as I do this year, the number of grapes will still be a three digit number, but if I have three times as many grapes, the number of grapes will be a four digit number. If I have 21 times as many grapes, the number of grapes will be a five digit number.

If each jar of grape juice requires 20 grapes, how many full jars of grape juice can I make this year?

### Fiona's Telephone Number

When Shrek asks Fiona for her telephone number, Fiona is a bit coy about it, and tells Shrek the following information:

- My telephone number has 10 digits.
- There are no repeated digits in my telephone number.
- The first three digits are in ascending order.
- The second three digits are in descending order.
- Both the last four digits and the last two digits are multiples of sixty.
- My last four digits are not a multiple of 43.
- My first three digits are the square of an integer less than twenty.
- The sum of the second three digits is 14.

What number should Shrek dial?

### Palindrome Addition

Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.

Note: a palindrome is a number in which the digits would read the same forward and backward.

### Five Digit Number

The sum of the digits of a three digit number is eighteen. The first digit is three more than the last digit. There is a repeated digit in the number. What are all possible values of the number?

### Four Digit Number

I am a four digit number.

The sum of my digits is 20.

The product of my digits is 600.

The difference between my first two digits is 2, and the sum of my middle two digits is 11.

What number am I?

### Three Digit Number

I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.